
Algorithms II

CS 1025 Computer Science Fundamentals I

Stephen M. Watt
University of Western Ontario

Algorithms for Sorting

• How long should it take to sort n values?

• Some different ways to do it:
– Insertion Sort [Good for small n. Bad for big n.]

– Quick Sort [Excellent on average. Worst case = Insertion.]

• In each case, assume values are integers
in an array called data and we wish to sort
the slots from lo, up to but not including hi.

Insertion Sort

• Main idea:
– Make a series of passes over the array.

– After the first pass, the first 1 element is sorted.

– After the second pass, the first 2 elements are sorted.

– After the k-th pass, the first k elements are sorted.

• Algorithm:
– Make n passes. On pass number i, do the following:

• Take element i and insert it into the correct position
among the first i-1 elements.

• To do this, shift the elements bigger than it up by one space
to make room (using the space the i-th element came from).

At Each Stage

• Suppose we have sorted the first 4 slots:
[2,3,8,10,5,7,1,4,6,9]

• Extract the first “unsorted” number to a variable:
[2,3,8,10,_,7,1,4,6,9] temp = 5

• Shuffle earlier numbers up as long they are bigger:
[2,3,8,_,10,7,1,4,6,9] temp = 5
[2,3,_,8,10,7,1,4,6,9] temp = 5

• Now entries before the space are smaller or equal
and after the space are bigger.

• Put the blue number in the space.
[2,3,5,8,10,7,1,4,6,9]

Example

• [10,8,2,3,5,7,1,4,6,9]

• [8,10,2,3,5,7,1,4,6,9]

• [2,8,10,3,5,7,1,4,6,9]

• [2,3,8,10,5,7,1,4,6,9]

• [2,3,5,8,10,7,1,4,6,9]

• [2,3,5,7,8,10,1,4,6,9]

• [1,2,3,5,7,8,10,4,6,9]

• [1,2,3,4,5,7,8,10,6,9]

• [1,2,3,4,5,6,7,8,10,9]

• [1,2,3,4,5,6,7,8,9,10]

Program
// Sort the region [lo,hi) of the input array in place.

void insertionSort(int[] data, int lo, int hi) {
for (int i = lo; i < hi; i++) {

// Start of iter’n: entries lo..i-1 are in order.

// We will insert data[lo+i] into correct place.

int newGuy = data[i];
// Shuffle previous numbers up so long as bigger.
int j = i;
while (j > lo && data[j-1] > newGuy) {

data[j] = data[j-1];
j--;

}
// Insert new number into gap.
data[j] = newGuy;

// End of iter’n: entries lo..i are in order.

}

}

Algorithm Analysis

• How does this behave if the entries are all in order?

Time is proportional to n.

(You don’t need to be able to figure this out, but you should understand what it means.)

• How does it behave if the entries are in reverse order?

Time is proportional to n^2.

(You don’t need to be able to figure this out, but you should understand what it means.)

Quick Sort

• Algorithm:
– An array of size 0 or 1 is sorted.

– For larger arrays do the following:
• Pick an element in the array. Call this the “pivot.”

• Move the elements of the array so that
all elements ≤ pivot are to the left of it (smaller array index), and
all elements > pivot are to the right of it (bigger array index).

• Sort the left part.

• Sort the right part.

Example

• Input array: [10,8,2,3,7,5,1,4,6,9]

• Pick a pivot: [10,8,2,3,7,5,1,4,6,9]

• Move elements: [2,3,5,1,4,6,7,10,8,9]

• Sort left part (using the same method):
– [2,3,5,1,4,6,7,10,8,9]

– [1,4,2,3,5,6,7,10,8,9]
...

– [1,2,3,4,5,6,7,10,8,9]

• Sort right part (using the same method):
– [1,2,3,4,5, 6,7,10,8,9]

– [1,2,3,4,5, 6,7,8,9,10]

• Done: [1,2,3,4,5,6,7,8,9,10]

